Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.241
Filtrar
1.
J Virol ; 97(5): e0196022, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098948

RESUMO

Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV's host competence and tissue tropism in five mosquito species: Aedes aegypti, Culex tarsalis, Anopheles gambiae, Anopheles stephensi, and Anopheles albimanus. Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host (Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis-a vector of harmful human pathogens, including West Nile virus-is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission-a crucial step in discerning how Eilat virus maintains itself in nature.


Assuntos
Alphavirus , Culex , Mosquitos Vetores , Animais , Humanos , Alphavirus/fisiologia , Culex/virologia
2.
J Virol ; 96(15): e0075122, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867566

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Assuntos
Sangue , Dípteros , Comportamento Alimentar , Insetos Vetores , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Aedes/anatomia & histologia , Aedes/virologia , Animais , Bovinos/virologia , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/virologia , Culex/anatomia & histologia , Culex/virologia , Dípteros/anatomia & histologia , Dípteros/fisiologia , Dípteros/virologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Membranas Artificiais , Muscidae/anatomia & histologia , Muscidae/virologia , Fatores de Tempo
3.
Med Vet Entomol ; 36(3): 390-395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396754

RESUMO

Culex pipiens (Linnaeus), one of the most abundant mosquito species in Europe, plays a crucial role in the endemic transmission of West Nile virus and caused the large outbreak with >1600 human cases in 2018. Although evidence of resistance to pyrethroids has been reported for Cx. pipiens populations from Spain and Greece, resistance monitoring has been largely neglected in Italy. Herein, we investigate susceptibility of Italian Cx. pipiens populations to the pyrethroids permethrin and deltamethrin. Results from WHO-tube-bioassays revealed mortalities ranging from 14-54%, indicating high levels of resistance, in four out of 10 populations exposed to permethrin (0.75%) and of 63% in one of three populations exposed to deltamethrin (0.05%). Reduced susceptibility (mortality<98%) was detected in almost all other populations. A clear association is shown between the resistant phenotype and the presence of kdr-alleles in position 1014 of the VSSC, strongly suggesting its role in reducing susceptibility. The study provides the first evidence of pyrethroid-resistance in Italian Cx. pipiens populations and reports levels of resistance paralleled in the European region only in Turkey. This highlights the urgent need to implement insecticide-resistance management plans to restore the efficacy of the nowadays only chemical weapon available to control arbovirus transmission in Europe.


Assuntos
Culex , Resistência a Inseticidas , Inseticidas , Piretrinas , Vírus do Nilo Ocidental , Animais , Culex/genética , Culex/virologia , Resistência a Inseticidas/genética , Itália , Mosquitos Vetores , Permetrina
4.
PLoS Negl Trop Dis ; 16(1): e0010145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100289

RESUMO

Southern Russia remains affected by West Nile virus (WNV). In the current study, we identified the spatial determinants of WNV distribution in an area with endemic virus transmission, with special reference to the urban settings, by mapping probable points of human infection acquisition and points of virus detection in mosquitoes, ticks, birds, and mammals during 1999-2016. The suitability of thermal conditions for extrinsic virus replication was assessed based on the approach of degree-day summation and their changes were estimated by linear trend analysis. A generalized linear model was used to analyze the year-to-year variation of human cases versus thermal conditions. Environmental suitability was determined by ecological niche modelling using MaxEnt software. Human population density was used as an offset to correct for possible bias. Spatial analysis of virus detection in the environment showed significant contributions from surface temperature, altitude, and distance from water bodies. When indicators of location and mobility of the human population were included, the relative impact of factors changed, with roads becoming most important. When the points of probable human case infection were added, the percentage of leading factors changed only slightly. The urban environment significantly increased the epidemic potential of the territory and created quite favorable conditions for virus circulation. The private building sector with low-storey houses and garden plots located in the suburbs provided a connection between urban and rural transmission cycles.


Assuntos
Aves/virologia , Culicidae/virologia , Carrapatos/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Aedes/classificação , Aedes/virologia , Animais , Anopheles/classificação , Anopheles/virologia , Argasidae/virologia , Culex/classificação , Culex/virologia , Meio Ambiente , Geografia , Humanos , Ixodidae/virologia , Densidade Demográfica , Federação Russa/epidemiologia , Análise Espacial , Temperatura , Vírus do Nilo Ocidental/isolamento & purificação
5.
PLoS Negl Trop Dis ; 16(1): e0010075, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007285

RESUMO

BACKGROUND: West Nile virus is a mosquito-borne flavivirus which has been posing continuous challenges to public health worldwide due to the identification of new lineages and clades and its ability to invade and establish in an increasing number of countries. Its current distribution, genetic variability, ecology, and epidemiological pattern in the African continent are only partially known despite the general consensus on the urgency to obtain such information for quantifying the actual disease burden in Africa other than to predict future threats at global scale. METHODOLOGY AND PRINCIPAL FINDINGS: References were searched in PubMed and Google Scholar electronic databases on January 21, 2020, using selected keywords, without language and date restriction. Additional manual searches of reference list were carried out. Further references have been later added accordingly to experts' opinion. We included 153 scientific papers published between 1940 and 2021. This review highlights: (i) the co-circulation of WNV-lineages 1, 2, and 8 in the African continent; (ii) the presence of diverse WNV competent vectors in Africa, mainly belonging to the Culex genus; (iii) the lack of vector competence studies for several other mosquito species found naturally infected with WNV in Africa; (iv) the need of more competence studies to be addressed on ticks; (iv) evidence of circulation of WNV among humans, animals and vectors in at least 28 Countries; (v) the lack of knowledge on the epidemiological situation of WNV for 19 Countries and (vii) the importance of carrying out specific serological surveys in order to avoid possible bias on WNV circulation in Africa. CONCLUSIONS: This study provides the state of art on WNV investigation carried out in Africa, highlighting several knowledge gaps regarding i) the current WNV distribution and genetic diversity, ii) its ecology and transmission chains including the role of different arthropods and vertebrate species as competent reservoirs, and iii) the real disease burden for humans and animals. This review highlights the needs for further research and coordinated surveillance efforts on WNV in Africa.


Assuntos
Aedes/virologia , Culex/virologia , Carrapatos/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , África/epidemiologia , Animais , Humanos , Controle de Insetos/métodos , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/patologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
6.
PLoS Negl Trop Dis ; 15(12): e0009977, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860839

RESUMO

Virologic surveillance of Japanese encephalitis virus (JEV) relies on collecting pig blood specimens and adult mosquitoes in the past. Viral RNAs extracted from pig blood specimens suffer from low detecting positivity by reverse transcription PCR (RT-PCR). The oronasal transmission of the virus has been demonstrated in experimentally infected pigs. This observation suggested oronasal specimens could be useful source in the virus surveillance. However, the role of this unusual route of transmission remains unproven in the operational pig farm. In this study, we explore the feasibility of using pig oronasal secretions collected by chewing ropes to improve the positivity of detection in commercial pig farms. The multiplex genotype-specific RT-PCR was used in this study to determine and compare the positivity of detecting JEV viral RNAs in pig's oronasal secretions and blood specimens, and the primary mosquito vector. Oronasal specimens had the overall positive rate of 6.0% (95% CI 1.3%-16.6%) (3/50) to 10.0% (95% CI 2.1%-26.5%) (3/30) for JEV during transmission period despite the negative results of all blood-derived specimens (n = 2442). Interestingly, pig oronasal secretions and female Culex tritaeniorhynchus mosquito samples collected from the same pig farm showed similar viral RNA positive rates, 10.0% (95% CI 2.1%-26.5%) (3/30) and 8.9% (95% CI 2.5%-21.2%) (4/45), respectively (p> 0.05). Pig oronasal secretion-based surveillance revealed the seasonality of viral activity and identified closely related genotype I virus derived from the mosquito isolates. This finding indicates oronasal secretion-based RT-PCR assay can be a non-invasive, alternative method of implementing JEV surveillance in the epidemic area prior to the circulation of virus-positive mosquitoes.


Assuntos
Secreções Corporais/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/veterinária , Boca/virologia , Cavidade Nasal/virologia , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Animais , Bioensaio , Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/transmissão , Fazendas , Feminino , Genótipo , Reação em Cadeia da Polimerase Multiplex , RNA Viral/genética , Suínos
7.
Viruses ; 13(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834955

RESUMO

Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.


Assuntos
Culicidae/virologia , Flavivirus/classificação , Flavivirus/isolamento & purificação , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Anopheles/virologia , Arbovírus/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Culex/virologia , Flavivirus/genética , Vírus de Insetos/isolamento & purificação , Filogenia , África do Sul
8.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835097

RESUMO

BACKGROUND: Dengue virus and Japanese encephalitis virus are two common flaviviruses that are spread widely by Aedes and Culex mosquitoes. Livestock keeping is vital for cities; however, it can pose the risk of increasing the mosquito population. Our study explored how livestock keeping in and around a large city is associated with the presence of mosquitoes and the risk of them spreading flaviviruses. METHODS: An entomological study was conducted in 6 districts with 233 households with livestock, and 280 households without livestock, in Hanoi city. BG-Sentinel traps and CDC light traps were used to collect mosquitoes close to animal farms and human habitats. Adult mosquitoes were counted, identified to species level, and grouped into 385 pools, which were screened for flaviviruses using a pan-flavivirus qPCR protocol and sequencing. RESULTS: A total of 12,861 adult mosquitoes were collected at the 513 households, with 5 different genera collected, of which the Culex genus was the most abundant. Our study found that there was a positive association between livestock keeping and the size of the mosquito population-most predominantly between pig rearing and Culex species (p < 0.001). One pool of Cx. tritaeniorhynchus, collected in a peri-urban district, was found to be positive for Japanese encephalitis virus. CONCLUSIONS: The risk of flavivirus transmission in urban areas of Hanoi city due to the spread of Culex and Aedes mosquitoes could be facilitated by livestock keeping.


Assuntos
Aedes/virologia , Culex/virologia , Flavivirus/isolamento & purificação , Gado/virologia , Mosquitos Vetores/virologia , Animais , Cidades , Características da Família , Humanos , Vietnã
9.
Parasit Vectors ; 14(1): 527, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635176

RESUMO

The expansion of mosquito-borne diseases such as dengue, yellow fever, and chikungunya in the past 15 years has ignited the need for active surveillance of common and neglected mosquito-borne infectious diseases. The surveillance should be designed to detect diseases and to provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public health consequences can occur. Mosquitoes are important vectors of human and animal pathogens, and knowledge on their biodiversity and distribution in the Afrotropical region is needed for the development of evidence-based vector control strategies. Following a comprehensive literature search, an inventory of the diversity and distribution of mosquitoes as well as the different mosquito-borne diseases found in Cameroon was made. A total of 290 publications/reports and the mosquito catalogue website were consulted for the review. To date, about 307 species, four subspecies and one putative new species of Culicidae, comprising 60 species and one putative new species of Anopheles, 67 species and two subspecies of Culex, 77 species and one subspecies of Aedes, 31 species and one subspecies of Eretmapodites, two Mansonia, eight Coquillettidia, and 62 species with unknown medical and veterinary importance (Toxorhynchites, Uranotaenia, Mimomyia, Malaya, Hodgesia, Ficalbia, Orthopodomyia, Aedeomyia, and Culiseta and Lutzia) have been collected in Cameroon. Multiple mosquito species implicated in the transmission of pathogens within Anopheles, Culex, Aedes, Eretmapodites, Mansonia, and Coquillettidia have been reported in Cameroon. Furthermore, the presence of 26 human and zoonotic arboviral diseases, one helminthic disease, and two protozoal diseases has been reported. Information on the bionomics, taxonomy, and distribution of mosquito species will be useful for the development of integrated vector management programmes for the surveillance and elimination of mosquito-borne diseases in Cameroon.


Assuntos
Culicidae/fisiologia , Mosquitos Vetores/fisiologia , Doenças Transmitidas por Vetores/transmissão , Aedes/parasitologia , Aedes/fisiologia , Aedes/virologia , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Anopheles/virologia , Camarões , Culex/parasitologia , Culex/fisiologia , Culex/virologia , Culicidae/classificação , Culicidae/parasitologia , Culicidae/virologia , Surtos de Doenças , Humanos , Mosquitos Vetores/classificação , Doenças Transmitidas por Vetores/parasitologia , Doenças Transmitidas por Vetores/virologia
10.
PLoS Negl Trop Dis ; 15(10): e0009837, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695125

RESUMO

Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors.


Assuntos
Aedes/virologia , Culex/virologia , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Aedes/genética , Aedes/fisiologia , Animais , Bovinos/virologia , Colorado , Culex/fisiologia , Cervos/virologia , Mosquitos Vetores/classificação , Mosquitos Vetores/fisiologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Saliva/virologia
11.
Parasit Vectors ; 14(1): 547, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688314

RESUMO

BACKGROUND: Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates were made, there have been many more documented observations of mosquitoes and new methods have been developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental conditions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the risk of emerging and re-emerging mosquito-borne diseases. METHODS: We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche model to create updated estimates of the geographical range of seven predominant Culex species across North America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex salinarius, and Culex tarsalis. RESULTS: We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the Central Plains of the USA. CONCLUSIONS: Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease risk. It is critical to understand the current geographical distributions of these important disease vectors and the key environmental predictors structuring their distributions not only to assess current risk, but also to understand how they will respond to climate change. Since the environmental predictors structuring the geographical distribution of mosquito species varied, we hypothesize that each species may have a different response to climate change.


Assuntos
Distribuição Animal , Culex/fisiologia , Mosquitos Vetores/fisiologia , América , Animais , Mudança Climática , Culex/classificação , Culex/parasitologia , Culex/virologia , Humanos , Aprendizado de Máquina , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Mosquitos Vetores/virologia , América do Norte , América do Sul
12.
Viruses ; 13(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578403

RESUMO

Temperature plays a significant role in the vector competence, extrinsic incubation period, and intensity of infection of arboviruses within mosquito vectors. Most laboratory infection studies use static incubation temperatures that may not accurately reflect daily temperature ranges (DTR) to which mosquitoes are exposed. This could potentially compromise the application of results to real world scenarios. We evaluated the effect of fluctuating DTR versus static temperature treatments on the infection, dissemination, and transmission rates and viral titers of Culex tarsalis and Culex quinquefasciatus mosquitoes for West Nile virus. Two DTR regimens were tested including an 11 and 15 °C range, both fluctuating around an average temperature of 28 °C. Overall, no significant differences were found between DTR and static treatments for infection, dissemination, or transmission rates for either species. However, significant treatment differences were identified for both Cx. tarsalis and Cx. quinquefasciatus viral titers. These effects were species-specific and most prominent later in the infection. These results indicate that future studies on WNV infections in Culex mosquitoes should consider employing realistic DTRs to reflect interactions most accurately between the virus, vector, and environment.


Assuntos
Culex/fisiologia , Mosquitos Vetores/fisiologia , Temperatura , Vírus do Nilo Ocidental/patogenicidade , Animais , Culex/classificação , Culex/virologia , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia
13.
Parasit Vectors ; 14(1): 411, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407880

RESUMO

BACKGROUND: Culex (Culex) tritaeniorhynchus is an important vector of Japanese encephalitis virus (JEV) affecting feral pigs, native mammals and humans. The mosquito species is widely distributed throughout Southeast Asia, Africa and Europe, and thought to be absent in Australia. METHODS: In February and May, 2020 the Medical Entomology unit of the Northern Territory (NT) Top End Health Service collected Cx. tritaeniorhynchus female specimens (n = 19) from the Darwin and Katherine regions. Specimens were preliminarily identified morphologically as the Vishnui subgroup in subgenus Culex. Molecular identification was performed using cytochrome c oxidase subunit 1 (COI) barcoding, including sequence percentage identity using BLAST and tree-based identification using maximum likelihood analysis in the IQ-TREE software package. Once identified using COI, specimens were reanalysed for diagnostic morphological characters to inform a new taxonomic key to related species from the NT. RESULTS: Sequence percentage analysis of COI revealed that specimens from the NT shared 99.7% nucleotide identity to a haplotype of Cx. tritaeniorhynchus from Dili, Timor-Leste. The phylogenetic analysis showed that the NT specimens formed a monophyletic clade with other Cx. tritaeniorhynchus from Southeast Asia and the Middle East. We provide COI barcodes for most NT species from the Vishnui subgroup to aid future identifications, including the first genetic sequences for Culex (Culex) crinicauda and the undescribed species Culex (Culex) sp. No. 32 of Marks. Useful diagnostic morphological characters were identified and are presented in a taxonomic key to adult females to separate Cx. tritaeniorhynchus from other members of the Vishnui subgroup from the NT. CONCLUSIONS: We report the detection of Cx. tritaeniorhynchus in Australia from the Darwin and Katherine regions of the NT. The vector is likely to be already established in northern Australia, given the wide geographical spread throughout the Top End of the NT. The establishment of Cx. tritaeniorhynchus in Australia is a concern to health officials as the species is an important vector of JEV and is now the sixth species from the subgenus Culex capable of vectoring JEV in Australia. We suggest that the species must now be continuously monitored during routine mosquito surveillance programmes to determine its current geographical spread and prevent the potential transmission of exotic JEV throughout Australia.


Assuntos
Culex/classificação , Culex/genética , Insetos Vetores/classificação , Insetos Vetores/genética , Animais , Austrália , Culex/virologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Feminino , Insetos Vetores/virologia
14.
Sci Rep ; 11(1): 14964, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294769

RESUMO

Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods (e.g. physical/chemical) are increasingly ineffective; use of insecticides also imposes hazards to both human and ecosystem health. Advances in genome editing have allowed the development of genetic insect control methods, which are species-specific and, theoretically, highly effective. CRISPR/Cas9 is a bacteria-derived programmable gene editing tool that is functional in a range of species. We describe the first successful germline gene knock-in by homology dependent repair in C. quinquefasciatus. Using CRISPR/Cas9, we integrated an sgRNA expression cassette and marker gene encoding a fluorescent protein fluorophore (Hr5/IE1-DsRed, Cq7SK-sgRNA) into the kynurenine 3-monooxygenase (kmo) gene. We achieved a minimum transformation rate of 2.8%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed. Insertion homozygotes displayed a white eye phenotype in early-mid larvae and a recessive lethal phenotype by pupation. This work provides an efficient method for engineering C. quinquefasciatus, providing a new tool for developing genetic control tools for this vector.


Assuntos
Culex/crescimento & desenvolvimento , Técnicas de Introdução de Genes/veterinária , Quinurenina 3-Mono-Oxigenase/genética , RNA Polimerase III/genética , Animais , Sistemas CRISPR-Cas , Culex/genética , Culex/virologia , Reparo do DNA , Vetores de Doenças , Feminino , Genes Recessivos , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas de Insetos/genética , Masculino , Controle Biológico de Vetores , Regiões Promotoras Genéticas , Vírus do Nilo Ocidental/patogenicidade
15.
Virol J ; 18(1): 150, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281569

RESUMO

BACKGROUND: Mosquito-borne flaviviruses are prime pathogens and have been a major hazard to humans and animals. They comprise several arthropod-borne viruses, including dengue virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus. Culex flavivirus (CxFV) is a member of the insect-specific flavivirus (ISF) group belonging to the genus Flavivirus, which is widely distributed in a variety of mosquito populations. METHODS: Viral nucleic acid was extracted from adult mosquito pools and subjected to reverse transcriptase nested polymerase chain reaction (PCR) using target-specific primers for detecting CxFV nonstructural protein 5 (NS5). The PCR-positive samples were then sequenced, and a phylogenetic tree was constructed, including reference sequences obtained from GenBank. RESULTS: 21 pools, belonging to Culex pipiens pallens (Cx. p. pallens) were found to be positive for the CxFV RNA sequence, with a minimum infection rate of 14.5/1000 mosquitoes. The phylogenetic analysis of the NS5 protein sequences indicated that the detected sequences were closely related to strains identified in China, with 95-98% sequence similarities. CONCLUSION: Our findings highlight the presence of CxFV in Cx. p. pallens mosquito species in Jeju province, Republic of Korea. This is the first study reporting the prevalence of CxFV in Culex Pipiens (Cx. pipiens) host in the Jeju province, which can create possible interaction with other flaviviruses causing human and animal diseases. Although, mosquito-borne disease causing viruses were not identified properly, more detailed surveillance and investigation of both the host and viruses are essential to understand the prevalence, evolutionary relationship and genetic characteristic with other species.


Assuntos
Culex , Flavivirus , Animais , Culex/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Filogenia , República da Coreia
16.
Am J Trop Med Hyg ; 105(3): 813-817, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280147

RESUMO

Japanese encephalitis virus (JEV) is transmitted between swine, migratory birds, and Culex mosquitoes, and has circulated indigenously in Asia for almost a century. Despite being the country with the highest JEV diversity, surveillance targeting of Indonesia's vectors is scarce. This study collected mosquitoes from several locations in Tabanan Regency, Bali Island, Indonesia. We captured and classified 3,032 adult Culex mosquitoes into seven species, with Culex vishnui subgroup mosquitoes making up approximately 90% of the total. Japanese encephalitis virus was identified by next-generation sequencing (NGS) analysis of a Cx. vishnui mosquito pool. Genetic and phylogenetic analysis revealed the JEV as genotype (G) IV. The nucleotide identity was 99% with other JEV GIV isolates obtained from swine sera in 2017 on Bali Island and from a human patient in Australia with a travel history to Bali in 2019. This finding indicated that JEV GIV persists in restricted areas and is circulating between swine-mosquito vectors.


Assuntos
Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Insetos Vetores/virologia , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Genótipo , Indonésia
17.
Commun Biol ; 4(1): 804, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183751

RESUMO

The composition of wildlife communities can have strong effects on transmission of zoonotic vector-borne pathogens, with more diverse communities often supporting lower infection prevalence in vectors (dilution effect). The introduced Burmese python, Python bivittatus, is eliminating large and medium-sized mammals throughout southern Florida, USA, impacting local communities and the ecology of zoonotic pathogens. We investigated invasive predator-mediated impacts on ecology of Everglades virus (EVEV), a zoonotic pathogen endemic to Florida that circulates in mosquito-rodent cycle. Using binomial generalized linear mixed effects models of field data at areas of high and low python densities, we show that increasing diversity of dilution host (non-rodent mammals) is associated with decreasing blood meals on amplifying hosts (cotton rats), and that increasing cotton rat host use is associated with increasing EVEV infection in vector mosquitoes. The Burmese python has caused a dramatic decrease in mammal diversity in southern Florida, which has shifted vector host use towards EVEV amplifying hosts (rodents), resulting in an indirect increase in EVEV infection prevalence in vector mosquitoes, putatively elevating human transmission risk. Our results indicate that an invasive predator can impact wildlife communities in ways that indirectly affect human health, highlighting the need for conserving biological diversity and natural communities.


Assuntos
Boidae/fisiologia , Culex/virologia , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Interações Hospedeiro-Patógeno , Espécies Introduzidas , Mosquitos Vetores/virologia , Zoonoses Virais/transmissão , Animais , Ecossistema , Feminino , Cadeia Alimentar , Humanos
18.
Parasit Vectors ; 14(1): 331, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158103

RESUMO

BACKGROUND: Although American crows are a key indicator species for West Nile virus (WNV) and mount among the highest viremias reported for any host, the importance of crows in the WNV transmission cycle has been called into question because of their consistent underrepresentation in studies of Culex blood meal sources. Here, we test the hypothesis that this apparent underrepresentation could be due, in part, to underrepresentation of crow nesting habitat from mosquito sampling designs. Specifically, we examine how the likelihood of a crow blood meal changes with distance to and timing of active crow nests in a Davis, California, population. METHODS: Sixty artificial mosquito resting sites were deployed from May to September 2014 in varying proximity to known crow nesting sites, and Culex blood meal hosts were identified by DNA barcoding. Genotypes from crow blood meals and local crows (72 nestlings from 30 broods and 389 local breeders and helpers) were used to match mosquito blood meals to specific local crows. RESULTS: Among the 297 identified Culex blood meals, 20 (6.7%) were attributable to crows. The mean percentage of blood meals of crow origin was 19% in the nesting period (1 May-18 June 2014), but 0% in the weeks after fledging (19 June-1 September 2014), and the likelihood of a crow blood meal increased with proximity to an active nest: the odds that crows hosted a Culex blood meal were 38.07 times greater within 10 m of an active nest than > 10 m from an active nest. Nine of ten crow blood meals that could be matched to a genotype of a specific crow belonged to either nestlings in these nests or their mothers. Six of the seven genotypes that could not be attributed to sampled birds belonged to females, a sex bias likely due to mosquitoes targeting incubating or brooding females. CONCLUSION: Data herein indicate that breeding crows serve as hosts for Culex in the initial stages of the WNV spring enzootic cycle. Given their high viremia, infected crows could thereby contribute to the re-initiation and early amplification of the virus, increasing its availability as mosquitoes shift to other moderately competent later-breeding avian hosts.


Assuntos
Doenças das Aves/fisiopatologia , Corvos/fisiologia , Corvos/virologia , Culex/fisiologia , Culex/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/fisiologia , Animais , Doenças das Aves/virologia , Corvos/sangue , Comportamento Alimentar , Feminino , Masculino , Comportamento de Nidação , Febre do Nilo Ocidental/fisiopatologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
19.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065928

RESUMO

Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs' occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.


Assuntos
Aedes/virologia , Culex/virologia , Mosquitos Vetores/virologia , Viroses/transmissão , Vírus/isolamento & purificação , África Ocidental/epidemiologia , Animais , Animais Domésticos/virologia , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/transmissão , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Surtos de Doenças , Humanos , Viroses/epidemiologia , Vírus/classificação , Vírus/patogenicidade , Febre Amarela/transmissão , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão
20.
Acta Trop ; 221: 106010, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34129841

RESUMO

During the 2020 West Nile virus (WNV) transmission season, Greece was the most affected EU Member State. More than one third of human cases occurred in Serres regional unit in northern Greece, which is characterized by the presence of a major wetland (Kerkini lake and Strimon river). A total of 2809 Culex pipiens mosquitoes collected in Serres were grouped into 70 pools and tested for WNV. Ten (14.3%) pools were found positive, and all WNV sequences belonged to the Central European subclade of WNV lineage 2. The first human case occurred in a village nearby the lake, and all following cases occurred across the connected river and its tributaries. Similar distribution presented the sites where WNV-positive mosquitoes were detected. The number of Culex spp. mosquitoes per trap per night was higher in 2020 than in previous years (2017-2019). The spatial and temporal distribution of human cases and WNV-positive mosquitoes in 2020 in Serres regional unit suggest that the upsurge of the virus circulation was probably related with factors that affected the ecosystem of the wetland.


Assuntos
Culex , Febre do Nilo Ocidental , Animais , Culex/virologia , Ecossistema , Grécia/epidemiologia , Humanos , Lagoas , Análise Espaço-Temporal , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...